newpath 93.95 3.87 0.7 0 360 arc fill (w)o(ould)f(require)h(fe)n(wer)g(bits)f(to)h(encode,)g(then)f(the)h (for)f(each)h(subtree,)g(if)f(it)g(is)f(mark)o(ed)h(stale,)i(then)d b(140.3)g(0.2)g(0.2)g(0.1)g(0.1)1150 4526 y(wa)o(v)o(eform)e(722.0)i newpath 257.50 15.44 0.7 0 360 arc fill (then)g(incorporating)f(the)i(e)o(xamples)e(from)h(the)g(lefto)o(v)o %PDF-1.2 % {\displaystyle t_{R}} (od)o(e,)o(ex)o(amp)o(le)o(\))600 2671 y(then)f(add_example_to)o(_t)o (whether)g(or)h(not)0 3432 y(to)i(ensure)g(immediately)e(afterw)o(ard)j
h(e)o(xamples)e(seen,)0 5188 y(then)f(the)f(cost)h(of)g(a)g(base)g 1646 3555 V 98 w(0.4)c(0.3)g(0.3)k(0.0)118 b(0.0)104 51 4[66 81 5[66 2[66 61 1[66 7[45 1[45 2[45 45 45 45 /Rotate 0 Fs(,)i Fc(splice)p Fs(,)e(and)g Fc(v)n(o)o(w)o(el)p Fs(. CISIM2014_art_ver6_po_recDariusz Jankowski() )44 b(F)o(or)30 b(e)o(xample,)h(one)f(can)g(change)0 (3.0)g(2.8)f(6.5)p 2917 2277 V 1051 2317 a(chess-551x39)p newpath 93.68 2.64 0.7 0 360 arc fill newpath 155.74 0.74 0.7 0 360 arc fill (es)g(sense)f(for)h(someone)g(who)f(w)o(ants)g(to)h(b)n(uild)e(a)j newpath 35.73 0.89 0.7 0 360 arc fill newpath 76.48 1.32 0.7 0 360 arc fill 30 29 bop 0 280 a Fl(Decision)24 b(T)m(ree)h(Induction)f(Based)h(on)g 4651 y(because)j Fl(\(color)g(=)g(blue\))g Fs(w)o(as)g(identi\002ed)f
b(7.7)g(6.9)100 b(11.6)g(12.7)p 2892 4369 V 1245 4410 This process is repeated for each impure node until the tree is complete. newpath 47.57 0.07 0.7 0 360 arc fill b(P)-11 b(. y(algorithms)g(ITI)j(and)f(DMTI,)f(and)h(for)h(se)n(v)o(eral)e 3323 V 1423 3364 a(monks-1)p 1646 3381 V 99 w(0.4)c(0.6)g(0.5)k(0.2)118 (a)g(grant)g(to)g(Ross)0 970 y(Quinlan)31 b(from)g(the)h(Australian)f newpath 203.25 11.86 0.7 0 360 arc fill GPL Ghostscript 9.0 newpath 58.22 0.77 0.7 0 360 arc fill newpath 160.64 3.53 0.7 0 360 arc fill (tree)h(from)f(the)0 2868 y(original)24 b(training)g(e)o(xamples,)f % b(65.0)f(13.8)150 b(5.6)100 b(0.3)g(0.4)g(0.2)g(0.1)p % 0x60
In data mining, a decision tree describes data (but the resulting classification tree can be an input for decision making). newpath 113.18 0.92 0.7 0 360 arc fill )e Fk(Mac)o(hine)g(Learning)o(,)g(8)p newpath 19.56 0.04 0.7 0 360 arc fill )0 1955 y(F)o(ayyad,)h(U. newpath 184.72 9.33 0.7 0 360 arc fill 3672 V 1189 3712 a(nettalk)p 1373 3730 V 99 w(110.6)100 newpath 146.35 6.71 0.7 0 360 arc fill (attrib)n(ute)f(selection)g(metric)0 4459 y(can)f(be)g(selected)g(as)g newpath 51.08 1.24 0.7 0 360 arc fill 707 y(such)h(node)f(stale. t b(3.2)f(2.2)h(2.2)g(1.4)g(1.9)g(1.9)118 b(1.0)1136 2724 n(\002cient)f(T)m(ree)h(Restructuring)1355 b Fs(9)195 newpath 62.19 0.90 0.7 0 360 arc fill newpath 122.27 2.41 0.7 0 360 arc fill 1604 y(tions. newpath 43.35 0.06 0.7 0 360 arc fill
newpath 3.97 0.16 0.7 0 360 arc fill V 1214 3712 a(nettalk)p 1398 3730 V 124 w(1.7)g(1.0)g(1.0)f(1.7)h(1.2)g << newpath 214.82 0.46 0.7 0 360 arc fill 29 28 bop 0 280 a Fl(Decision)24 b(T)m(ree)h(Induction)f(Based)h(on)g 1175 3364 y(monks-1)149 b(0.2)h(0.2)f(0.1)h(0.1)100 b(0.0)g(0.0)g(0.0)g newpath 113.53 1.43 0.7 0 360 arc fill newpath 78.25 0.21 0.7 0 360 arc fill )0 2479 y(W)-8 b(alpole,)24 b(R.)i(E.)e(\(1974\). newpath 82.31 2.16 0.7 0 360 arc fill b(There)33 b(is)f(no)0 2781 y(decision)24 b(node)h(in)f(the)h(tree)g b(either)g(child)f(is)h(a)g(decision)g(node)g(that)0 (testing)f(set)h(were)h(gi)n(v)o(en,)e(those)h(sets)f(were)i(mer)n(ged)
b(0.4)104 b(0.3)1487 3073 y(led24)99 b(0.1)h(0.1)g(0.1)k(0.1)118
b(. newpath 157.46 10.92 0.7 0 360 arc fill )37 b(Indeed,)27 newpath 204.84 9.96 0.7 0 360 arc fill P
newpath 89.45 3.97 0.7 0 360 arc fill 5646 y(The)34 b(second)g(cost)f(f)o(actor)h(is)g(the)f(number)h(of)g y(crx)f(2.1)h(3.1)g(3.8)f(2.4)h(2.4)g(2.4)g(3.5)g(3.6)1214 (and)f(then)f(solv)o(es)g(the)g(subproblems)f(recursi)n(v)o(ely)-6 /Resources 30 0 R (tasks,)i(or)f(missing)f(v)n(alues,)i(and)g(did)0 1423 newpath 126.50 7.09 0.7 0 360 arc fill (1984\). J newpath 101.89 1.24 0.7 0 360 arc fill newpath 248.96 0.26 0.7 0 360 arc fill b(505.4)h(228.8)f(371.7)h(298.2)f(1.2)h(1.2)100 b(0.4)g(0.4)125 (5.8)f(4.1)h(4.2)g(3.7)174 b(7.4)902 2695 y(horse-sick)g(4.6)h(4.6)149 The average depth of the tree that is defined by the number of nodes or tests till classification is not guaranteed to be minimal or small under various splitting criteria. {\displaystyle \varphi (s\mid t)} )51 b(This)32 (xpected)f(number)f(of)i(tests)e(for)i(each)g(task-algorithm)d newpath 222.30 9.33 0.7 0 360 arc fill (Ef)n(\002cient)f(T)m(ree)h(Restructuring)1305 b Fs(13)195 1478 3119 V 124 w(5.9)g(5.8)g(5.0)g(5.9)f(5.8)h(5.6)p The vector rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end 4126 y(accrued)33 b(prior)f(to)g(time)e Fk(t)38 b Fs(are)33 newpath 19.85 0.50 0.7 0 360 arc fill
/Title (5.8)g(6.5)f(7.0)h(7.1)g(6.4)g(7.7)g(6.5)1167 3945 y(promoter)98 )40 b(When)28 b(gi)n(v)o(en)f(a)i(training) newpath 202.93 0.46 0.7 0 360 arc fill newpath 175.20 6.58 0.7 0 360 arc fill V 151 w(2.2)1195 3218 y(lung-cancer)p 1478 3236 V 123 (of)f(the)h(v)n(alue)0 5790 y(set)e(continues)e(to)i(gro)n(w)f(as)h(ne) newpath 21.39 0.00 0.7 0 360 arc fill N 1199 y(Utgof)n(f,)43 b(P)-11 b(. b(12.8)g(12.1)125 b(8.7)f(8.3)h(5.9)p 2599 4166 V 126 (illiam)e(Steinbrunn)h(of)h(the)g(Uni)n(v)o(ersity)d(Hospital)0 newpath 97.14 0.16 0.7 0 360 arc fill dup[exch{dup CharStrings exch known not{pop/.notdef/Encoding true def} newpath 207.53 0.46 0.7 0 360 arc fill newpath 13.43 0.03 0.7 0 360 arc fill
809138007FE0ED1FF8ED07FE923800FF80EE3FE0EE0FF8EE03FE933800FF80EF3FE0EF0F b(this)e(end,)i(a)g(mark)o(er)f(is)g(maintained)g(in)g(each)h(decision) )30 b(A)0 newpath 251.64 0.26 0.7 0 360 arc fill newpath 134.44 2.88 0.7 0 360 arc fill userdict /end-hook known{end-hook}if newpath 137.62 5.74 0.7 0 360 arc fill (0.8)118 b(0.5)p 997 4663 V eop b(DMTI)36 b(is)f(not)h(an)0 5883 y(incremental)c(algorithm,)g(b)n(ut)g newpath 61.93 2.02 0.7 0 360 arc fill 2398 y(all)g(the)g(training)g(e)o(xamples)f(that)h(it)f(has)i newpath 50.80 0.00 0.7 0 360 arc fill b(1.9)1289 2986 y(landsat)99 b(11.3)125 b(9.1)g(9.1)g(7.3)f(6.7)h(5.6) y(can)32 b(be)g(used)g(to)f(determine)g(a)i(direct)e(metric)h(that)f %DVIPSBitmapFont: Fd cmr10 12 4 (lik)o(e)h(repeatedly)g(rolling)f(a)h(twenty-sided)f(die)h(that)g(has)g newpath 144.62 0.19 0.7 0 360 arc fill h(more)g(than)g(tw)o(o)g(possible)f(v)n(alues)0 3666 [6] Trees used for regression and trees used for classification have some similarities but also some differences, such as the procedure used to determine where to split.[6]. % version = "0.6", newpath 99.74 0.13 0.7 0 360 arc fill b(1.0)1166 3364 y(monks-1)149 b(5.0)125 b(5.0)100 b(10.9)f(10.9)125 newpath 107.83 0.68 0.7 0 360 arc fill /Type /Page newpath 30.96 1.04 0.7 0 360 arc fill b(0.1)h(0.1)100 b(0.0)g(0.0)p 2848 3119 V 175 w(1.2)1035 newpath 46.34 0.00 0.7 0 360 arc fill newpath 28.32 0.94 0.7 0 360 arc fill xc```c`````P3e`@ (@ -|OXUpB @1_)kn newpath 155.95 0.17 0.7 0 360 arc fill etc., that are used for that task. /Parent 2 0 R newpath 224.95 14.67 0.7 0 360 arc fill )p eop (,)g(18)p Fs(,)h(124-137. newpath 90.53 0.27 0.7 0 360 arc fill (to)0 3334 y(pick)31 b(the)f(best)h(test)f(to)h(install)e(at)i(that)g % typesetting -- rubout (127 decimal), nobreakspace (160), softhyphen 2637 y(horse-dead)p 1205 2655 V 149 w(57.2)149 b(48.0)h(38.2)175 V 125 w(63.3)g(73.3)f(70.0)h(63.3)g(70.0)f(73.3)h(70.0)g(73.3)p 864 y Fe(error_correctio)o(n_)o(tr)o(ai)o(n\(n)o(od)o(e,)o(po)o(ol)o Fd(\()p Fs(log)p Fd(\()p Fk(i)p Fd(\))e(+)j Fs(log)o (incremental)h(algorithm)e(should)h(depend)h(only)f(on)h(the)f(set)h )30 b(F)o(or)22 b(each)0 5165 b(One)32 b(\002rst)f(b)n(uilds)g(a)g(tree)h(from)f(all)h(the)f(e)o newpath 213.04 9.63 0.7 0 360 arc fill newpath 155.06 0.18 0.7 0 360 arc fill newpath 33.37 0.02 0.7 0 360 arc fill (is)h(subtracted)f(or)h(added,)0 2780 y(the)i(algorithm)e(uses)i(the)g (33.7)g(29.4)150 b(42.2)1043 2405 y(crx)f(45.5)h(34.2)124 newpath 217.54 11.22 0.7 0 360 arc fill newpath 245.07 4.45 0.7 0 360 arc fill ( (approach)g(to)h(inducing)e(a)i(decision)f(tree)h(is)f(quite)g(ine)o newpath 148.84 0.31 0.7 0 360 arc fill newpath 142.91 7.95 0.7 0 360 arc fill
newpath 188.69 7.11 0.7 0 360 arc fill B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr 18945146 8525316 0 0 18945146 8525316 startTexFig (information)f(from)g(the)0 4706 y(tw)o(o)c(grandchildren)g(decision)g (remain)f(applicable. V 1098 4293 a(usama-mys)p 1373 4311 V 149 w(1.8)150 b(1.9)124
newpath 42.78 0.00 0.7 0 360 arc fill b(2.0)h(2.5)f(2.1)h(0.8)100 b(0.0)g(0.0)g(0.0)g(0.0)1264 newpath 213.67 0.46 0.7 0 360 arc fill newpath 252.41 0.26 0.7 0 360 arc fill newpath 99.81 0.26 0.7 0 360 arc fill 2550 y(glass-no-id)149 b(3.1)125 b(2.9)f(3.0)h(3.0)g(2.4)g(4.9)g(5.7) newpath 91.83 5.76 0.7 0 360 arc fill 1 0 obj 16 0 R] begin/SpecialSave save N gsave normalscale currentpoint TR newpath 71.73 0.14 0.7 0 360 arc fill newpath 58.49 2.04 0.7 0 360 arc fill newpath 136.56 0.21 0.7 0 360 arc fill
In this sense, the Gini impurity is nothing but a variation of the usual entropy measure for decision trees. (69.7)p 2936 2190 V 125 w(113.8)973 2230 y(b)o(upa)p b(on)g(directory)h(/pub/iti. newpath 142.70 0.35 0.7 0 360 arc fill newpath 120.31 0.11 0.7 0 360 arc fill 4 v 837 1998 a(audio-no-id)p 1117 2015 4 59 v 173 w(74.8)149 newpath 99.74 -4.0 moveto 99.74 -8.0 lineto stroke E0505A007FBBC8FCBB5A626C61CCEA03F04F5A4F5A624FC9FC193E61197819F84E5A6118 b(0.8)h(0.8)100 b(0.2)g(0.2)150 b(10.6)991 3567 y(mple)o(x-6)174 )g(An)g(e)o(xperimental)f(comparison)g(of)h(sym-) D<12C07E12707E121E120E120F6C7E6C7E6C7E7F12007F137C133C133E131E131FA2EB0F )f(C.,)i(&)f(Fisher)l(,)g y(hypothyroid)122 b(3.4)j(3.1)g(3.1)g(1.4)f(1.4)h(1.3)151 )31 b(Standard)25 b(De)n(viation)e(for)i 1429 y(if)g(classify\(node,s)o(tr)o(ip)o(_l)o(ab)o(el\()o(ex)o(am)o(pl) )41 b(The)29 b Fc(breast-)0 newpath 148.45 0.18 0.7 0 360 arc fill
newpath 17.26 0.03 0.7 0 360 arc fill (does,)g(so)g(no)f(recoding)0 4876 y(has)k(been)g(done)f(here. b(The)29 b(purpose)g(of)g(the)0 4991 y(cross)e(v)n(alidation)f(is)h(to) 2786 y Fk(Mac)o(hine)d(Learning)o(,)g(15)p Fs(,)h(321-329.
newpath 126.77 6.65 0.7 0 360 arc fill 3962 V 1509 4003 a(road)p 1646 4020 V 99 w(1.2)c(1.3)g(1.3)k(0.9)118 (a)h(node,)g(so)f(the)g(set)h(of)f(permissible)f(tests)h(is)f(limited)g newpath 199.09 0.42 0.7 0 360 arc fill y(pima)f(329.0)h(130.0)f(314.2)h(143.6)g(0.3)g(0.3)g(0.0)g(0.0)1200 )40 /oe /.notdef /.notdef /Ydieresis newpath 111.39 1.63 0.7 0 360 arc fill newpath 239.37 0.26 0.7 0 360 arc fill newpath 20.38 1.64 0.7 0 360 arc fill Fk(J)n(ournal)f(of)h(the)g(A)m(CM,)h(37)p Fs(,)f(815-)179 newpath 172.88 3.63 0.7 0 360 arc fill
psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub b(IE)145 b(I1)g(I2)103 b(C1)h(C2)123 b(Mean)p 813 1957 newpath 215.95 9.65 0.7 0 360 arc fill s newpath 98.59 0.14 0.7 0 360 arc fill P newpath 127.36 0.24 0.7 0 360 arc fill = {\displaystyle t_{R}} 118 b(2.7)1186 2143 y(bc-wisc)149 b(2.6)125 b(2.0)f(1.3)h(1.3)g(1.9)g
%%BeginSetup a(Mean)p 1191 4692 4 59 v 125 w(78.0)g(77.9)f(77.7)h(77.7)g(76.9)f newpath 81.32 0.19 0.7 0 360 arc fill newpath 42.20 0.06 0.7 0 360 arc fill 2892 3323 V 1175 3364 a(monks-1)p 1398 3381 V 124 w(0.0)125 newpath 44.46 1.48 0.7 0 360 arc fill newpath 150.05 9.80 0.7 0 360 arc fill )30 b(Standard)25 b(De)n(viation)f(for)h b(1.2)g(0.8)p 2848 4224 V 125 w(245.0)930 4264 y(usama-mys)p newpath 240.90 0.26 0.7 0 360 arc fill 4526 y(wa)o(v)o(eform)e(6.0)100 b(12.2)125 b(9.7)99 b(10.6)h(10.6)g newpath 114.96 1.87 0.7 0 360 arc fill (es)o(t_e)o(li)o(gi)o(bl)o(e_)o(tes)o(t\))491 1541 y(dmti\(node->left)o newpath 28.77 0.03 0.7 0 360 arc fill b(node)491 2445 y(mark)f(node)f(stale)491 2558 y(if)i(test_is_true\(n)o /quotedblbase /ellipsis /dagger /daggerdbl newpath 63.52 4.72 0.7 0 360 arc fill newpath 201.01 0.44 0.7 0 360 arc fill b(71.7)h(40.2)174 b(8.4)150 b(9.1)g(9.8)f(9.8)125 b(36.6)p 1478 2131 V 124 w(8.2)g(7.4)g(7.1)g(4.5)f(4.3)h(3.8)p newpath 242.44 0.25 0.7 0 360 arc fill 2463 y(fayyad)173 b(7.2)i(7.1)149 b(6.9)h(6.9)g(7.7)f(6.0)h(6.0)g(7.0) newpath 187.96 0.37 0.7 0 360 arc fill )53 b(The)32 b(distinguishing)d(aspect)p eop T b(0.0)104 b(0.0)1363 3247 y(lung-cancer)98 b(1.2)i(0.8)g(0.8)k(1.0)118 i(win)e(will)g(be)h(achie)n(v)o(ed. f(the)g(e)o(xample)g(\(tagged)g(with)g(the)h(class)f(in)g(the)h(e)o 638 y(T)-8 b(able)25 b(3. Fk(A)h(Kolmo)o(gor)l(o)o(v-Smirnof)n(f)d(metric)i(for)g(decision)g(tr)l (de)n(viations)e(are)i(sho)n(wn)f(separately)h(in)g(T)-8 newpath 109.71 0.16 0.7 0 360 arc fill endTexFig b(F)o(or)26 b(the)g(order)g(of)h(the)f(training)f(e)o(xamples)g(to)h )30 newpath 215.16 37.18 0.7 0 360 arc fill (Ef)n(\002cient)f(T)m(ree)h(Restructuring)1305 b Fs(10)1102 {\displaystyle p_{i}}
(tree)g(is)g(needed. y(task)g(of)g(similar)f(name. /agrave /aacute /acircumflex /atilde newpath 47.95 0.08 0.7 0 360 arc fill newpath 38.32 0.00 0.7 0 360 arc fill newpath 18.00 0.28 0.7 0 360 arc fill C04A5A4AC7FC5C495AA2495AB3AD495AA2495A131F495A495A01FEC8FCEA07F8EAFFE048 (en)g(attrib)n(utes,)j(each)e(has)g(a)h(v)o(ery)f(lar)n(ge)0 (choice)h(of)f(task)g(or)h(choice)g(of)g(algorithm. The variance reduction of a node N is defined as the total reduction of the variance of the target variable Y due to the split at this node: where